
.6cm
.

Introduction to Formal Languages,
Automata and Computability

Context-Free Grammars - Properties and Parsing

K. Krithivasan and R. Rama

Introduction to Formal Languages, Automata and Computability – p.1/44

Pumping Lemma for CFL

Theorem Let L be a context-free language. Then there
exists a number k (pumping length) such that if w is a
string in L of length at least ‘k’, then w can be written
as w = uvxyz satisfying the following conditions:

1. |vy| > 0

2. |vxy| ≤ k

3. For each i ≥ 0, uvixyiz ∈ L

Proof Let G be a context-free grammar in Chomsky
normal form generating L. Let ‘n’ be the number of
nonterminals of G. Take k = 2n. Let ‘s’ be a string in
L such that |s| ≥ k. Any parse tree in G for s must be

Introduction to Formal Languages, Automata and Computability – p.2/44

contd.

of depth at least n. This can be seen as follows:
If the parse tree has depth n, it has no path of length
greater than n; then the maximum length of the word
derived is 2n−1. This statement can be proved by
induction. If n = 1, the tree has structure

S

a
. If n = 2,

the tree has the structure
...

...

S

. Assuming that the

result holds upto i − 1, consider a tree with depth i.
No path in this tree is of length greater than i. The
tree has the structure as in the above figure.

Introduction to Formal Languages, Automata and Computability – p.3/44

contd.

T1
T2

S

T1 and T2 have depth i − 1 and the maximum length
of the word derivable in each is 2i−2 and so the
maximum length of the string derivable in T is
2i−2 + 2i−2 = 2i−1.
Choose a parse tree for s that has the least number of
nodes. Consider the longest path in this tree. This path
is of length at least ‘n+1’. Then there must be at least

Introduction to Formal Languages, Automata and Computability – p.4/44

contd.

n + 1-occurrences of nonterminals along this path. Consider the

nodes in this path starting from the leaf node and going up towards

the root. By pigeon-hole principle some nonterminal occurring on

this path should repeat. Consider the first pair of occurrences of

the nonterminal A (say) which repeats while reading along the

path from bottom to top. In figure 1, the repetition of A thus iden-

tified allows us to replace the subtree under the second occurrence

of the nonterminal A with the subtree under the first occurrence

of A. The legal parse trees are given in figure.

Introduction to Formal Languages, Automata and Computability – p.5/44

contd.

A

A

A

A

A

A

S

u v

xv y

y z

S

u z
x

u v x z

S

y

(i)

(ii)

(iii)

Figure 1:

Introduction to Formal Languages, Automata and Computability – p.6/44

contd.

We divide s as uvxyz as in Figure 1(i). Each
occurrence of A has a subtree under it generating a
substring of s. The occurrence of A near the root of
the tree generates the string ‘vxy’ where the second
occurrence of A produces x. Both the occurrences of
A produce substrings of s. Hence one can replace the
occurrence of A that produces x by a parse tree that
produces vxy as shown in Figure 1(ii). Hence strings
of the form uvixyiz, for i > 0 are generated. One can
replace the subtree rooted at A which produces ‘vxy’
by a subtree which produced x as in Figure 1(iii).
Hence the string ‘uxz’ is generated. In essence,

S
∗
⇒ uAz

∗
⇒ uvAyz

∗
⇒ uvxyz

Introduction to Formal Languages, Automata and Computability – p.7/44

contd.

We have A
∗
⇒ vAy. Hence A

∗
⇒ viAyi.

Therefore we have S
∗
⇒ uAz

∗
⇒ uviAyiz

∗
⇒ uvixyiz.

Both v and y simultaneously cannot be empty as we
consider the grammar in Chomsky Normal Form. The
lower A will occur in the left or right subtree. If it
occurs in the left subtree, y cannot be ε and if it occurs
in the right subtree, v cannot be ε.
The length of vxy is at most k, because the first oc-
currence of A generates vxy and the next occurrence
generates x. The number of nonterminal occurrences
between these two occurrences of A is less than n + 1.

Introduction to Formal Languages, Automata and Computability – p.8/44

contd.

Hence length of vxy is at most 2n(= k). Hence the
proof.
Example Show that L = {anbncn|n ≥ 0} is not
context-free.
Suppose L is context-free. Let p be the pumping
length. Choose s = apbpcp. Clearly |s| > p. Then
s can be pumped and all the pumped strings must be in
L. But we show that they are not. That is, we show that
s can never be divided as uvxyz such that uvixyiz as in
L for all i ≥ 0. v and y are not empty simultaneously.

Introduction to Formal Languages, Automata and Computability – p.9/44

contd.

If v and y can contain more than one type of symbol,
then uv2xy2z may not be of the form anbncn. If v or y

contains only one type of alphabet, then uv2xy2z
cannot contain equal number of a’s, b’s and c’s or uxz
has unequal number of a’s, b’s and c’s. Thus a
contradiction arises.
Hence L is not a context-free language.

Introduction to Formal Languages, Automata and Computability – p.10/44

Closure Properties of CFL

Theorem Let L be a context-free language over TΣ

and σ be a substitution on T such that σ(a) is a CFL
for each a in T . Then σ(L) is a CFL.
Proof Let G = (N, T, P, S) be a context-free
grammar generating L. Since σ(a) is a CFL, let
Ga = (Na, Ta, Pa, Sa) be a CFG generating σ(a) for
each a ∈ T . Without loss of generality, Na ∩ Nb = φ
and Na ∩ N = φ for a 6= b, a, b ∈ T . We now
construct a CFG G′ = (N ′, T ′, P ′, S) which generates
σ(L) as follows :

N ′ is the union of Na’s, a ∈ T and N

T ′ = ∪
a∈T

Ta

Introduction to Formal Languages, Automata and Computability – p.11/44

contd.

P ′ consists of :
all productions in Pa for a ∈ T

all productions in P , but for each terminal a
occurring in any rule of P , is to be replaced
by Sa. i.e., in A → α, every occurrence of a
(∈ T) in α is replaced by Sa.

Any derivation tree of G′ will typically look as in the
following figure.

Introduction to Formal Languages, Automata and Computability – p.12/44

contd.

S

S S

x x x

a b k

a b k

S

Here ab . . . k is a string of L and xaxb . . . xk is a string
of σ(L). To understand the working of G′ producing
σ(L), we have the following discussion:
A string w is in L(G′) if and only if w is in σ(L).
Suppose w is in σ(L). Then there is some string
x = a1 . . . ak in L and strings

Introduction to Formal Languages, Automata and Computability – p.13/44

contd.

xi in σ(ai), 1 ≤ i ≤ k, such that w = x1 . . . xk.
Clearly from the construction of G′, Sa1

. . . Sak
is

generated (for a1 . . . ak ∈ L). From each Sai
, xis are

generated where xi ∈ σ(ai). This becomes clear from
the above picture of derivation tree. Since G′ includes
productions of Gai

, x1 . . . xk belongs to σ(L).
Conversely for w ∈ σ(L), we have to understand the
proof with the help of the parse tree constructed above.
That is, the start symbol of G and G′ are S. All the
nonterminals of G, Ga’s are disjoint. Starting from S,
one can use the productions of G′ and G and reach

Introduction to Formal Languages, Automata and Computability – p.14/44

contd.

w = Sa1
. . . Sak

and w′ = a1 . . . ak respectively.
Hence whenever w has a parse tree T , one can
identity a string a1a2 . . . ak in L(G) and string xi in
σ(ai) such that x1 . . . xk ∈ σ(L). Since x1 . . . xk is a
string formed by substitution of strings xi’s for ai’s,
we conclude w ∈ σ(L).
Theorem Context-free languages are closed under
union, catenation, catenation closure (*), catenation +
and homomorphism.
Proof

Union : Let L1 and L2 be two CFLs. If
L = {1, 2} and σ(1) = L1 and σ(2) = L2.
Clearly σ(L) = σ(L1) ∪ σ(L2) = L1 ∪ L2 is CFL
by the above theorem. Introduction to Formal Languages, Automata and Computability – p.15/44

contd.

Catenation : Let L1 and L2 be two CFLs. Let
L = {12}. σ(1) = L1 and σ(2) = L2. Clearly
σ(L) = σ(1).σ(2) = L1L2 is CFL as in the above
case.
Catenation Closure (*) : Let L1 be a CFL. Let
L = {1}∗ and σ(1) = L1. Clearly L∗

1 = σ(L) is a
CFL.
Catenation + : Let L1 be a CFL. Let L = {1}+

and σ(1) = L1. Clearly L+
1 = σ(L) is a CFL.

Homomorphism : This follows as
homomorphism is a particular case of
substitution.

Introduction to Formal Languages, Automata and Computability – p.16/44

contd.

Theorem Context-free languages are not closed under
intersection and complementation.
Proof Let L1 = {anbncm|n,m ≥ 1} and
L2 = {ambncn|n,m ≥ 1}.
Clearly L1 and L2 are context-free languages. (Exercise : Give
CFG’s for L1 and L2).
L1 ∩ L2 = {anbncn|n ≥ 1} which has been shown to be
noncontext-free. Hence CFLs are not closed under ∩.

For nonclosure under complementation, if CFL’s are closed under

complementation, then for any two CFLs L1 and L2, L1 ∩ L2 =

(Lc
1 ∪ Lc

2)
c which is a CFL. Hence we get CFLs are closed under

intersection, which is a contradiction.
Introduction to Formal Languages, Automata and Computability – p.17/44

contd.

Theorem If L is a CFL and R is a regular language,
then L ∩ R is a CFL.
Proof Let M = (K, Σ, Γ, δ, q0, Z0, F) be a PDA such
that T (M) = L and let A = (K, Σ, δ, q0, F) be a DFA
such that T (A) = R. A new PDA M ′ is constructed
by combining M and A such that the new automaton
simulates the action of M and A on an input parallely.
Hence the new PDA M ′ will be as follows:
M ′ = (K × K, Σ, Γ, δ′, [q0, q0], Z0, F × F) where
δ′([p, q], a,X) is defined as follows: δ′([p, q], a,X)

contains ([r, s], γ) where δ(q, a) = s and δ(p, a,X)
contains (r, γ).

Introduction to Formal Languages, Automata and Computability – p.18/44

contd.

Clearly for each move of the PDA M ′, there exists a
move by the PDA M and a move by A. The input a

may be in Σ or a = ε. When a is in Σ, δ(q, a) = s and
when a = ε, δ(q, a) = q i.e., A does not change its
state while M ′ makes a transition on ε.
To prove L(M ′) = L ∩ R. We can show
that (q0, w, Z0)

∗
`
M

(qf , ε, γ) if and only if
([q0, q0], w, Z0)

∗
`
M

([qf , p], ε, γ) where δ(q0, w) = p.

Introduction to Formal Languages, Automata and Computability – p.19/44

contd.

The proof is by induction on the number of derivation
steps and is similar to that of closure of regular
languages with respect to intersection. If qf ∈ F and
p ∈ F , then w belongs to both L and R. Therefore M ′

accepts L ∩ R.

Theorem Family of context-free languages is closed
under inverse homomorphism.

Introduction to Formal Languages, Automata and Computability – p.20/44

Decidability Results for CFL

Theorem Given a CFL L, there exists an algorithm to test
whether L is empty, finite or infinite.
Proof To test whether L is empty, one can see whether the start
symbol S of the CFG G = (N,T, S, P) which generates L is
useful or not. If S is a useful symbol, then L 6= φ.
To see whether the given CFL L is infinite, we have the
following discussion. By pumping lemma for CFL, if L contains
a word of length t, with |t| > k for a constant k (pumping
length), then clearly L is infinite.

Conversely if L is infinite it satisfies the conditions of the pump-

ing lemma, otherwise L is finite. Hence we have to test whether

L contains a word of length greater than k.
Introduction to Formal Languages, Automata and Computability – p.21/44

CYK Algorithm

We fill a triangular table where the horizontal axis
corresponds to the positions of an input string
w = a1a2 . . . an. An entry Xij which is an ith row jth
column entry will be filled by a set of variables A
such that A ⇒∗ aiai+1 . . . aj . The triangular table will
be filled row wise in upward fashion. For example if
w = a1a2a3a4a5, the table will look like,

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45

X11 X22 X33 X44 X55

a1 a2 a3 a4 a5Introduction to Formal Languages, Automata and Computability – p.22/44

contd.

Note by the definition of Xij , bottom row corresponds to a string
of length one and top row corresponds to a string of length n, if
|w| = n. The computation of the table is as below.
First Row (from bottom) : Since the strings beginning and
ending position is i, they are simply those variable for which we
have A → ai, and listed in Xii. We assume that the given CFG in
CNF generates L.

To compute Xij which will be in (j − i + 1)th row we fill all

the entries in the rows below. Hence we know all the variables

which give strings aiai+1 . . . aj . Clearly we take j − i > 0. Any

derivation of the form A ⇒∗ aiai+1 . . . aj will have a derivation

step like Introduction to Formal Languages, Automata and Computability – p.23/44

contd.

A ⇒ BC ⇒∗ aiai+1 . . . aj . B derives a prefix of
aiai+1 . . . aj and C derives a suffix of aiai+1 . . . aj .
i.e., B ⇒∗ aiai+1 . . . ak, k < j and
C

∗
⇒ ak+1ak+2 . . . aj . Hence we place A in Xij if, for

a k, i ≤ k < j, there is a production A → BC with
B ∈ Xik and C ∈ Xk+1j . Since Xik and Xk+1j entries
are already known for all k, 1 ≤ k ≤ j, Xij can be
computed.
The algorithm terminates once an entry X1n is filled
where n is the length of the input. Hence we have the
following theorem.
Theorem The algorithm described above correctly
computes Xij for all i and j. Hence w ∈ L(G), for a
CFL L if and only if S ∈ X1n. Introduction to Formal Languages, Automata and Computability – p.24/44

contd.

Example Consider the CFG G with the following productions:
S0 → AB|SA

S → AB|SA|a

A → AB|SA|a|b

B → SA

We shall test the membership of aba in L(G) using CYK algorithm.
The table thus produced on application of CYK algorithm is as below:

S0, S,A,B

S0, S,A,B φ

S,A A S,A

a b a
Since X13 has S0, aba is in L(G).

Introduction to Formal Languages, Automata and Computability – p.25/44

Sub Families of CFL

Definition A CFG G = (N,T, P, S) is said to be linear if all
rules are of the form A → xBy or A → x, x, y ∈ T ∗, A,B ∈ N .
i.e., the right-hand side consists of at most one nonterminal.
Example G = ({S}, {a, b}, P, S) where
P = {S → aSb, S → ab} is a linear CFG generating
L = {anbn|n ≥ 1}.

Definition For an integer k ≥ 2, a CFG, G = (N,T, P, S) is

termed k-linear if and only if each production in P is one of the

three forms, A → xBy, A → x, or S → α, where α contains at

most k nonterminals and S does not appear on right hand side of

any production, x, y ∈ T ∗.
Introduction to Formal Languages, Automata and Computability – p.26/44

contd.

A context-free language is k-linear if and only if it is generated
by a k-linear grammar.
Example G = ({S,X, Y }, {a, b, c, d, e}, P, S) where
P = {S → XcY,X → aXb,X → ab, Y → dY e, Y → de}

generates {anbncdmem|n,m ≥ 1}. This is a 2-linear grammar.
Definition A grammar G is metalinear if and only if there is an
integer k such that G is k-linear. A language is metalinear if and
only if it is generated by a metalinear grammar.

Definition A minimal linear grammar is a linear grammar with the

initial letter S as the only nonterminal and with S → a, for some

terminal symbol a, as the only

Introduction to Formal Languages, Automata and Computability – p.27/44

contd.

production with no nonterminal on the right side.
Furthermore it is assumed that a does not occur in any
other production.
Example G = ({S}, {a, b}, {S → aSa, S → b}) is a
minimal linear grammar generating {anban|n ≥ 0}.
Definition An even linear grammar is a linear
grammar where all productions with a nonterminal Y
on the right-hand side are of the form X → uY v
where |u| = |v|.
Definition A linear grammar G = (N, T, P, S) is
deterministic linear if and only if all production in P
are of the two forms.

X → aY v X → a, a ∈ T, v ∈ T ∗

Introduction to Formal Languages, Automata and Computability – p.28/44

contd.

and furthermore for any X ∈ N and a ∈ T , there is
at most one production having a as the first symbol on
the right-hand side.
Definition A context-free grammar G = (N, T, P, S)
is sequential if and only if an ordering on symbols of
N can be imposed {X1, . . . , Xn} where S = X1 and
for all rules Xi → α in P , we have
α ∈ (VT ∪ {Xj|1 ≤ j ≤ n})∗.
Example G = ({X1, X2}, {a, b}, P,X1) where
P = {X1 → X2X1, X1 → ε,X2 → aX2b,X2 → ab}
is sequential generating L∗ where L = {anbn|n ≥ 1}.
Definition The family of languages accepted by
deterministic PDA are called deterministic CFL.

Introduction to Formal Languages, Automata and Computability – p.29/44

contd.

Definition A PDA M = (K,Σ,Γ, δ, qr, Z0, F) is called a k-turn
PDA, if and only if the stack increases and decreases (makes a
turn) at most k times. If it makes just one turn, it is called a one
turn PDA. When k is finite it is called finite line PDA. It should
be noted that for some CFL number of turns of the PDA cannot
be bounded.
We state some results without giving proofs.
Theorem The family of languages accepted by one turn PDA is
the same as the family of linear languages.
Theorem The class of regular sets forms a subclass of even linear
languages.

Definition A context-free grammar G = (N,T, P, S) is said to be
Introduction to Formal Languages, Automata and Computability – p.30/44

contd.

ultralinear (sometimes called nonterminal bounded) if and only if there
exists an integer k such that any sentential form α such that S

∗
⇒ α,

contains at most k nonterminals (whether leftmost, rightmost or any
derivation is considered). A language is ultralinear (nonterminal
bounded) if and only if it is generated by an ultralinear grammar.
Theorem The family of ultralinear languages is the same as the family
of languages accepted by finite turn PDA.
For example, consider the CFL

L = {w|w ∈ {a, b}+, w has equal number of a′s and b′s}.

For accepting arbitrarily long strings, the number of turns of the PDA

cannot be bounded by some k.

Introduction to Formal Languages, Automata and Computability – p.31/44

contd.

Definition Let G = (N,T, P, S) be a CFG. For a sentential form
α, let #N(α) denote the number of nonterminals in α. Let D be
a derivation of a word w in G.

D : S = α0 ⇒ α1 ⇒ α1 · · · ⇒ αr = w

The index of D is defined as

ind(D) = max
0≤j≤r

#N(αj)

For a word w in L(G), there may be several derivations, leftmost,

rightmost, etc. Also if G is ambiguous, w may have more than

one leftmost derivation.

Introduction to Formal Languages, Automata and Computability – p.32/44

contd.

For a word w ∈ L(G), we define

ind(w,G) = min
D

ind(D)

where D ranges over all derivations of w in G. The index of G,
ind(G), is the smallest natural number u such that for all
w ∈ L(G), ind(w,G) ≤ u. If no such u exists, G is said to be of
infinite index. Finally, the index of a CFL L is defined as
ind(L) = minG ind(G) where G ranges over all the context-free
grammars generating L.

We say that a CFL is of finite index then the index of L is finite.

The family of CFL with finite index is denoted as FI. Some-

times, this family is also called the family
Introduction to Formal Languages, Automata and Computability – p.33/44

contd.

of derivation bounded languages.
Example Let G = ({X1, X2}, {a, b}, P,X1) where
P = {X1 → X2X1, X1 → ε,X2 → aX2b,X2 → ab}

is of index 2. The language consists of strings of the form
an1bn1an2bn2 . . . anrbnr . In a leftmost derivation, the maximum
number of nonterminals that can occur is 2 whereas in a
rightmost derivation it is r and keeps increasing with r. This
grammar is not a nonterminal bounded grammar but it is of finite
index.

Example L = Dyck set = well formed strings of parentheses is

generated by {S → SS, S → aSb, S → ab} (a = (, b =)). Here

we find that as the length of the string increases, and the level of
Introduction to Formal Languages, Automata and Computability – p.34/44

contd.

nesting increases the number of nonterminals in a
sentential form keeps increasing and cannot be
bounded. This CFG is not of finite index. L is not of
finite index.
Definition A context-free grammar G = (N, T, P, S)
is termed nonexpansive if there is no nonterminal
A ∈ N such that A

∗
⇒ α and α contains two

occurrences of A. Otherwise G is expansive. The
family of languages generated by nonexpansive
grammars is denoted by NE .
Theorem NE = FI .

Introduction to Formal Languages, Automata and Computability – p.35/44

Self-embedding Property

In this section we consider the self-embedding
property which makes CFL more powerful than
regular sets. Pumping lemma for CFL makes use of
this property. By this property it is possible to pump
equally on both sides of a substring which is lacking
in regular sets.
Definition Let G = (N, T, P, S) be a CFG. A
nonterminal A ∈ N is said to be self-embedding if
A

∗
⇒ xAy where x, y ∈ (N ∪ T)+. A grammar G is

self-embedding if it has a self-embedding
nonterminal.
A context-free grammar is nonself-embedding if none
of its nonterminals are self-embedding.

Introduction to Formal Languages, Automata and Computability – p.36/44

contd.

Any right linear grammar is nonself-embedding as the
nonterminal occurs as the rightmost symbol in any
sentential form. Hence a regular set is generated by a
nonself-embedding grammar. We have the following
result.
Theorem If a CFG G is nonself-embedding, then
L(G) is regular.
Proof Let G = (N, T, P, S) be a nonself-embedding
CFG. Without loss of generality we can assume that
ε 6∈ L(G) and G is in GNF. [While converting a CFG to
GNF, the self-embedding or nonself-embedding prop-
erty does not get affected].

Introduction to Formal Languages, Automata and Computability – p.37/44

contd.

Let k be the number of nonterminals in G and l be
the maximum length of the right-hand side of any pro-
duction in G. Let w ∈ L(G) and consider a leftmost
derivation of w in G. Every sentential form is of the
form xα where x ∈ T ∗ and α ∈ N ∗. The length of α

can be at most kl. This can be seen as follows. Suppose
there is a sentential form xα where |α| > kl. Consider
the corresponding derivation tree which is of the form
given in figure.

Introduction to Formal Languages, Automata and Computability – p.38/44

contd.

a1

a1

a1

a1

S

C

BA

X ZY

Consider the path from S to X , the leftmost nontermi-
nal in α. Consider the nodes in this path where nonter-
minals are introduced to the right of the nodes. Since
the maximum number of nodes introduced on the right

Introduction to Formal Languages, Automata and Computability – p.39/44

contd.

is l − 1, there must be more than k such nodes as
|α| > kl. So two of such nodes will have the same
label say A and we get A

∗
⇒ x′Aβ, x′ ∈ T+, β ∈ N+.

Hence A is self-embedding and G is not
nonself-embedding as supposed. Hence the maximum
number of nonterminals which can occur in any
sentential form in a leftmost derivation in G is kl.
Construct a right linear grammar G′ = (N ′, T, P ′, S ′)
such that L(G′) = L(G).
N ′ = {[α]|α ∈ N+, |α| ≤ kl}.
S ′ = [S]

Introduction to Formal Languages, Automata and Computability – p.40/44

contd.

P ′ consists of rules of the following form.
If A → aB1 . . . Bm is in P , then
[Aβ] → a[B1 . . . Bmβ] is in P ′ for all possible β ∈ N ∗ such that
|Aβ| ≤ kl, |B1 . . . Bmβ| ≤ kl. So if there is a derivation in G.

S ⇒ a1α1 ⇒ a1a2α2 ⇒ · · · ⇒ a1 . . . an−1αn−1 ⇒ a1 . . . an

there is a derivation in G′ of the form

[S] ⇒ a[α1] ⇒ a1a2[α2] ⇒ · · · ⇒ a1 . . . an−1[αn−1] ⇒ a1 . . . an

and vice versa. Hence L(G) = L(G′) and L(G) is regular.

Introduction to Formal Languages, Automata and Computability – p.41/44

contd.

Theorem Every context-free language over a one
letter alphabet is regular. Thus a set {ai|i ∈ A} is a
CFL if and only if A is ultimately periodic.
Proof Let L ⊆ a∗ be a context-free language. By
pumping lemma for CFL, there exists an integer k
such that for each word w in L such that |w| > p, w

can be written as uvxyz such that |vxy| ≤ k, |vy| > 0
and uvixyiz ∈ L for all i ≥ 0, w is in a∗. Hence
u, v, x, y, z all are in a∗. So uxz(vy)i is in L for all
i ≥ 0. Let vy = aj . So uxz(aj)i is in L for all i ≥ 0.
Let n = k(k − 1) . . . 1 = k!. Then w(an)m is in L,
because w(an)m can be written as w(aj)i

Introduction to Formal Languages, Automata and Computability – p.42/44

contd.

for i = m × k!

j
, 1 ≤ j ≤ k. w(an)∗ ⊆ L ⊆ a∗ for each word w in

L such that |w| > k.

For each i, 1 ≤ i ≤ n, let Ai = ak+i(an)∗∩L. If Ai 6= φ, let wi be

the word in Ai of minimum length. If Ai = φ, let wi be undefined.

Then w is in
⋃

i

wi(a
n)∗ for each w in L with |w| > k. Let B be

the set of strings in L of length ≤ k. Then L = B ∪
n⋃

i=1

wi(a
n)∗.

B is a finite set represented by u1 + · · · + ur (say). Then L is

represented by (u1 + · · ·+ur)+ (w1 + · · ·+wn)(an)∗. Therefore

L is regular.

Introduction to Formal Languages, Automata and Computability – p.43/44

contd.

Example As seen earlier, it immediately follows that
{an2

|n ≥ 1}, {a2n

|n ≥ 0}, {ap|p is a prime} are not
regular and hence they are not context-free.

Introduction to Formal Languages, Automata and Computability – p.44/44

	Pumping Lemma for CFL
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Closure Properties of CFL
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Decidability Results for CFL
	CYK Algorithm
	contd.
	contd.
	contd.
	Sub Families of CFL
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Self-embedding Property
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.

