Introduction to Formal Languages, Automata and Computability

Context-Free Grammars - Properties and Parsing
K. Krithivasan and R. Rama

Pumping Lemma for CFL

Theorem Let L be a context-free language. Then there exists a number k (pumping length) such that if w is a string in L of length at least ' k ', then w can be written as $w=u v x y z$ satisfying the following conditions:

1. $|v y|>0$
2. $|v x y| \leq k$
3. For each $i \geq 0, u v^{i} x y^{i} z \in L$

Proof Let G be a context-free grammar in Chomsky normal form generating L. Let ' n ' be the number of nonterminals of G. Take $k=2^{n}$. Let ' s ' be a string in L such that $|s| \geq k$. Any parse tree in G for s must be

contd.

of depth at least n. This can be seen as follows: If the parse tree has depth n, it has no path of length greater than n; then the maximum length of the word derived is 2^{n-1}. This statement can be proved by
induction. If $n=1$, the tree has structure \mid. If $n=2$,
the tree has the structure . Assuming that the
result holds upto $i-1$, consider a tree with depth i. No path in this tree is of length greater than i. The tree has the structure as in the above figure.

contd.

T_{1} and T_{2} have depth $i-1$ and the maximum length of the word derivable in each is 2^{i-2} and so the maximum length of the string derivable in T is $2^{i-2}+2^{i-2}=2^{i-1}$.
Choose a parse tree for s that has the least number of nodes. Consider the longest path in this tree. This path is of length at least ' $n+1$ '. Then there must be at least

contd.

$n+1$-occurrences of nonterminals along this path. Consider the nodes in this path starting from the leaf node and going up towards the root. By pigeon-hole principle some nonterminal occurring on this path should repeat. Consider the first pair of occurrences of the nonterminal A (say) which repeats while reading along the path from bottom to top. In figure 1 , the repetition of A thus identified allows us to replace the subtree under the second occurrence of the nonterminal A with the subtree under the first occurrence of A. The legal parse trees are given in figure.

contd.

Figure 1:

contd.

We divide s as uvxyz as in Figure 1(i). Each occurrence of A has a subtree under it generating a substring of s. The occurrence of A near the root of the tree generates the string ' $v x y$ ' where the second occurrence of A produces x. Both the occurrences of A produce substrings of s. Hence one can replace the occurrence of A that produces x by a parse tree that produces $v x y$ as shown in Figure 1(ii). Hence strings of the form $u v^{i} x y^{i} z$, for $i>0$ are generated. One can replace the subtree rooted at A which produces ' $v x y$ ' by a subtree which produced x as in Figure 1(iii). Hence the string ' $u x z$ ' is generated. In essence,

$$
S \stackrel{*}{\Rightarrow} u A z \stackrel{*}{\Rightarrow} u v A y z \stackrel{*}{\Rightarrow} u v x y z z
$$

contd.

We have $A \stackrel{*}{\Rightarrow} v A y$. Hence $A \stackrel{*}{\Rightarrow} v^{i} A y^{i}$.
Therefore we have $S \stackrel{*}{\Rightarrow} u A z \stackrel{*}{\Rightarrow} u v^{i} A y^{i} z \stackrel{*}{\Rightarrow} u v^{i} x y^{i} z$. Both v and y simultaneously cannot be empty as we consider the grammar in Chomsky Normal Form. The lower A will occur in the left or right subtree. If it occurs in the left subtree, y cannot be ϵ and if it occurs in the right subtree, v cannot be ϵ.
The length of $v x y$ is at most k, because the first occurrence of A generates $v x y$ and the next occurrence generates x. The number of nonterminal occurrences between these two occurrences of A is less than $n+1$.

contd.

Hence length of $v x y$ is at most $2^{n}(=k)$. Hence the proof.
Example Show that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.

Suppose L is context-free. Let p be the pumping length. Choose $s=a^{p} b^{p} c^{p}$. Clearly $|s|>p$. Then s can be pumped and all the pumped strings must be in L. But we show that they are not. That is, we show that s can never be divided as $u v x y z$ such that $u v^{i} x y^{i} z$ as in L for all $i \geq 0$. v and y are not empty simultaneously.

contd.

If v and y can contain more than one type of symbol, then $u v^{2} x y^{2} z$ may not be of the form $a^{n} b^{n} c^{n}$. If v or y contains only one type of alphabet, then $u v^{2} x y^{2} z$ cannot contain equal number of a 's, b 's and c 's or $u x z$ has unequal number of a 's, b 's and c 's. Thus a contradiction arises.
Hence L is not a context-free language.

Closure Properties of CFL

Theorem Let L be a context-free language over T_{Σ} and σ be a substitution on T such that $\sigma(a)$ is a CFL for each a in T. Then $\sigma(L)$ is a CFL.
Proof Let $G=(N, T, P, S)$ be a context-free grammar generating L. Since $\sigma(a)$ is a CFL, let $G_{a}=\left(N_{a}, T_{a}, P_{a}, S_{a}\right)$ be a CFG generating $\sigma(a)$ for each $a \in T$. Without loss of generality, $N_{a} \cap N_{b}=\phi$ and $N_{a} \cap N=\phi$ for $a \neq b, a, b \in T$. We now construct a CFG $G^{\prime}=\left(N^{\prime}, T^{\prime}, P^{\prime}, S\right)$ which generates $\sigma(L)$ as follows :
N^{\prime} is the union of N_{a} 's, $a \in T$ and N

- $T^{\prime}=\bigcup_{a \in T} T_{a}$

contd.

$\square P^{\prime}$ consists of :

- all productions in P_{a} for $a \in T$
\square all productions in P, but for each terminal a occurring in any rule of P, is to be replaced by S_{a}. i.e., in $A \rightarrow \alpha$, every occurrence of a $(\in T)$ in α is replaced by S_{a}.

Any derivation tree of G^{\prime} will typically look as in the following figure.

contd.

Here $a b \ldots k$ is a string of L and $x_{a} x_{b} \ldots x_{k}$ is a string of $\sigma(L)$. To understand the working of G^{\prime} producing $\sigma(L)$, we have the following discussion:
A string w is in $L\left(G^{\prime}\right)$ if and only if w is in $\sigma(L)$.
Suppose w is in $\sigma(L)$. Then there is some string $x=a_{1} \ldots a_{k}$ in L and strings

contd.

x_{i} in $\sigma\left(a_{i}\right), 1 \leq i \leq k$, such that $w=x_{1} \ldots x_{k}$.
Clearly from the construction of $G^{\prime}, S_{a_{1}} \ldots S_{a_{k}}$ is generated (for $a_{1} \ldots a_{k} \in L$). From each $S_{a_{i}}, x_{i} \mathrm{~s}$ are generated where $x_{i} \in \sigma\left(a_{i}\right)$. This becomes clear from the above picture of derivation tree. Since G^{\prime} includes productions of $G_{a_{i}}, x_{1} \ldots x_{k}$ belongs to $\sigma(L)$.
Conversely for $w \in \sigma(L)$, we have to understand the proof with the help of the parse tree constructed above. That is, the start symbol of G and G^{\prime} are S. All the nonterminals of G, G_{a} 's are disjoint. Starting from S, one can use the productions of G^{\prime} and G and reach

contd.

$w=S_{a_{1}} \ldots S_{a_{k}}$ and $w^{\prime}=a_{1} \ldots a_{k}$ respectively.
Hence whenever w has a parse tree T, one can identity a string $a_{1} a_{2} \ldots a_{k}$ in $L(G)$ and string x_{i} in $\sigma\left(a_{i}\right)$ such that $x_{1} \ldots x_{k} \in \sigma(L)$. Since $x_{1} \ldots x_{k}$ is a string formed by substitution of strings x_{i} 's for a_{i} 's, we conclude $w \in \sigma(L)$.
Theorem Context-free languages are closed under union, catenation, catenation closure (*), catenation + and homomorphism.

Proof

- Union : Let L_{1} and L_{2} be two CFLs. If $L=\{1,2\}$ and $\sigma(1)=L_{1}$ and $\sigma(2)=L_{2}$. Clearly $\sigma(L)=\sigma\left(L_{1}\right) \cup \sigma\left(L_{2}\right)=L_{1} \cup L_{2}$ is CFL by the above theorem.

contd.

- Catenation : Let L_{1} and L_{2} be two CFLs. Let $L=\{12\} \cdot \sigma(1)=L_{1}$ and $\sigma(2)=L_{2}$. Clearly $\sigma(L)=\sigma(1) \cdot \sigma(2)=L_{1} L_{2}$ is CFL as in the above case.
- Catenation Closure (*) : Let L_{1} be a CFL. Let $L=\{1\}^{*}$ and $\sigma(1)=L_{1}$. Clearly $L_{1}^{*}=\sigma(L)$ is a CFL.

Catenation + : Let L_{1} be a CFL. Let $L=\{1\}^{+}$ and $\sigma(1)=L_{1}$. Clearly $L_{1}^{+}=\sigma(L)$ is a CFL.

- Homomorphism : This follows as homomorphism is a particular case of substitution.

contd.

Theorem Context-free languages are not closed under intersection and complementation.
Proof Let $L_{1}=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 1\right\}$ and
$L_{2}=\left\{a^{m} b^{n} c^{n} \mid n, m \geq 1\right\}$.
Clearly L_{1} and L_{2} are context-free languages. (Exercise : Give CFG's for L_{1} and L_{2}).
$L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ which has been shown to be noncontext-free. Hence CFLs are not closed under \cap.

For nonclosure under complementation, if CFL's are closed under complementation, then for any two CFLs L_{1} and $L_{2}, L_{1} \cap L_{2}=$ $\left(L_{1}^{c} \cup L_{2}^{c}\right)^{c}$ which is a CFL. Hence we get CFLs are closed under intersection, which is a contradiction.

contd.

Theorem If L is a CFL and R is a regular language, then $L \cap R$ is a CFL.
Proof Let $M=\left(K, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ be a PDA such that $T(M)=L$ and let $A=\left(\bar{K}, \Sigma, \bar{\delta}, \bar{q}_{0}, \bar{F}\right)$ be a DFA such that $T(A)=R$. A new PDA M^{\prime} is constructed by combining M and A such that the new automaton simulates the action of M and A on an input parallely. Hence the new PDA M^{\prime} will be as follows:
$M^{\prime}=\left(K \times \bar{K}, \Sigma, \Gamma, \delta^{\prime},\left[q_{0}, \bar{q}_{0}\right], Z_{0}, F \times \bar{F}\right)$ where $\delta^{\prime}([p, q], a, X)$ is defined as follows: $\delta^{\prime}([p, q], a, X)$ contains $([r, s], \gamma)$ where $\bar{\delta}(q, a)=s$ and $\delta(p, a, X)$ contains (r, γ).

contd.

Clearly for each move of the PDA M^{\prime}, there exists a move by the PDA M and a move by A. The input a may be in Σ or $a=\epsilon$. When a is in $\Sigma, \bar{\delta}(q, a)=s$ and when $a=\epsilon, \bar{\delta}(q, a)=q$ i.e., A does not change its state while M^{\prime} makes a transition on ϵ.
To prove $L\left(M^{\prime}\right)=L \cap R$. We can show that $\left(q_{0}, w, Z_{0}\right) \stackrel{*}{\stackrel{*}{M}}\left(q_{f}, \epsilon, \gamma\right)$ if and only if $\left(\left[q_{0}, \bar{q}_{0}\right], w, Z_{0}\right) \stackrel{*}{M}_{*}^{*}\left(\left[q_{f}, p\right], \epsilon, \gamma\right)$ where $\bar{\delta}\left(\bar{q}_{0}, w\right)=p$.

contd.

The proof is by induction on the number of derivation steps and is similar to that of closure of regular languages with respect to intersection. If $q_{f} \in F$ and $p \in \bar{F}$, then w belongs to both L and R. Therefore M^{\prime} accepts $L \cap R$.

Theorem Family of context-free languages is closed under inverse homomorphism.

Decidability Results for CFL

Theorem Given a CFL L, there exists an algorithm to test whether L is empty, finite or infinite.
Proof To test whether L is empty, one can see whether the start symbol S of the CFG $G=(N, T, S, P)$ which generates L is useful or not. If S is a useful symbol, then $L \neq \phi$.
To see whether the given CFL L is infinite, we have the following discussion. By pumping lemma for CFL, if L contains a word of length t, with $|t|>k$ for a constant k (pumping length), then clearly L is infinite.

Conversely if L is infinite it satisfies the conditions of the pumping lemma, otherwise L is finite. Hence we have to test whether L contains a word of length greater than k.

CYK Algorithm

We fill a triangular table where the horizontal axis corresponds to the positions of an input string $w=a_{1} a_{2} \ldots a_{n}$. An entry $X_{i j}$ which is an i th row j th column entry will be filled by a set of variables A such that $A \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j}$. The triangular table will be filled row wise in upward fashion. For example if $w=a_{1} a_{2} a_{3} a_{4} a_{5}$, the table will look like,

```
X15
```

$\begin{array}{ll}X_{14} & X_{25} \\ X_{13} & X_{24}\end{array}$
$\begin{array}{lll}X_{13} & X_{24} & X_{35}\end{array}$
$\begin{array}{llll}X_{12} & X_{23} & X_{34} & X_{45}\end{array}$
$\begin{array}{llllll}X_{11} & X_{22} & X_{33} & X_{44} & X_{55}\end{array}$

contd.

Note by the definition of $X_{i j}$, bottom row corresponds to a string of length one and top row corresponds to a string of length n, if $|w|=n$. The computation of the table is as below.
First Row (from bottom) : Since the strings beginning and ending position is i, they are simply those variable for which we have $A \rightarrow a_{i}$, and listed in $X_{i i}$. We assume that the given CFG in CNF generates L.

To compute $X_{i j}$ which will be in $(j-i+1)^{\text {th }}$ row we fill all the entries in the rows below. Hence we know all the variables which give strings $a_{i} a_{i+1} \ldots a_{j}$. Clearly we take $j-i>0$. Any derivation of the form $A \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j}$ will have a derivation step like

contd.

$A \Rightarrow B C \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j} . B$ derives a prefix of $a_{i} a_{i+1} \ldots a_{j}$ and C derives a suffix of $a_{i} a_{i+1} \ldots a_{j}$. i.e., $B \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{k}, k<j$ and
$C \stackrel{*}{\Rightarrow} a_{k+1} a_{k+2} \ldots a_{j}$. Hence we place A in $X_{i j}$ if, for a $k, i \leq k<j$, there is a production $A \rightarrow B C$ with $B \in X_{i k}$ and $C \in X_{k+1 j}$. Since $X_{i k}$ and $X_{k+1 j}$ entries are already known for all $k, 1 \leq k \leq j, X_{i j}$ can be computed.
The algorithm terminates once an entry $X_{1 n}$ is filled where n is the length of the input. Hence we have the following theorem.
Theorem The algorithm described above correctly computes $X_{i j}$ for all i and j. Hence $w \in L(G)$, for a

contd.

Example Consider the CFG G with the following productions:
$S_{0} \rightarrow A B \mid S A$
$S \rightarrow A B|S A| a$
$A \rightarrow A B|S A| a \mid b$
$B \rightarrow S A$
We shall test the membership of $a b a$ in $L(G)$ using CYK algorithm.
The table thus produced on application of CYK algorithm is as below:

S_{0}, S, A, B		
S_{0}, S, A, B	ϕ	
S, A	A	S, A
a	b	a

Since X_{13} has $S_{0}, a b a$ is in $L(G)$.

Sub Families of CFL

Definition A CFG $G=(N, T, P, S)$ is said to be linear if all rules are of the form $A \rightarrow x B y$ or $A \rightarrow x, x, y \in T^{*}, A, B \in N$. i.e., the right-hand side consists of at most one nonterminal.

Example $G=(\{S\},\{a, b\}, P, S)$ where $P=\{S \rightarrow a S b, S \rightarrow a b\}$ is a linear CFG generating $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

Definition For an integer $k \geq 2$, a CFG, $G=(N, T, P, S)$ is termed k-linear if and only if each production in P is one of the three forms, $A \rightarrow x B y, A \rightarrow x$, or $S \rightarrow \alpha$, where α contains at most k nonterminals and S does not appear on right hand side of any production, $x, y \in T^{*}$.

contd.

A context-free language is k-linear if and only if it is generated by a k-linear grammar.
Example $G=(\{S, X, Y\},\{a, b, c, d, e\}, P, S)$ where $P=\{S \rightarrow X c Y, X \rightarrow a X b, X \rightarrow a b, Y \rightarrow d Y e, Y \rightarrow d e\}$ generates $\left\{a^{n} b^{n} c d^{m} e^{m} \mid n, m \geq 1\right\}$. This is a 2-linear grammar. Definition A grammar G is metalinear if and only if there is an integer k such that G is k-linear. A language is metalinear if and only if it is generated by a metalinear grammar.

Definition A minimal linear grammar is a linear grammar with the initial letter S as the only nonterminal and with $S \rightarrow a$, for some terminal symbol a, as the only

contd.

production with no nonterminal on the right side.
Furthermore it is assumed that a does not occur in any other production.
Example $G=(\{S\},\{a, b\},\{S \rightarrow a S a, S \rightarrow b\})$ is a minimal linear grammar generating $\left\{a^{n} b a^{n} \mid n \geq 0\right\}$. Definition An even linear grammar is a linear grammar where all productions with a nonterminal Y on the right-hand side are of the form $X \rightarrow u Y v$ where $|u|=|v|$.
Definition A linear grammar $G=(N, T, P, S)$ is deterministic linear if and only if all production in P are of the two forms.

$$
X \rightarrow a Y v \quad X \rightarrow a, \quad a \in T, v \in T^{*} \quad a \in
$$

contd.

and furthermore for any $X \in N$ and $a \in T$, there is at most one production having a as the first symbol on the right-hand side.
Definition A context-free grammar $G=(N, T, P, S)$ is sequential if and only if an ordering on symbols of N can be imposed $\left\{X_{1}, \ldots, X_{n}\right\}$ where $S=X_{1}$ and for all rules $X_{i} \rightarrow \alpha$ in P, we have
$\alpha \in\left(V_{T} \cup\left\{X_{j} \mid 1 \leq j \leq n\right\}\right)^{*}$.
Example $G=\left(\left\{X_{1}, X_{2}\right\},\{a, b\}, P, X_{1}\right)$ where $P=\left\{X_{1} \rightarrow X_{2} X_{1}, X_{1} \rightarrow \epsilon, X_{2} \rightarrow a X_{2} b, X_{2} \rightarrow a b\right\}$ is sequential generating L^{*} where $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$. Definition The family of languages accepted by deterministic PDA are called deterministic CFL.

contd.

Definition A PDA $M=\left(K, \Sigma, \Gamma, \delta, q_{r}, Z_{0}, F\right)$ is called a k-turn PDA, if and only if the stack increases and decreases (makes a turn) at most k times. If it makes just one turn, it is called a one turn PDA. When k is finite it is called finite line PDA. It should be noted that for some CFL number of turns of the PDA cannot be bounded.

We state some results without giving proofs.
Theorem The family of languages accepted by one turn PDA is the same as the family of linear languages.
Theorem The class of regular sets forms a subclass of even linear languages.

Definition A context-free grammar $G=(N, T, P, S)$ is said to be

contd.

ultralinear (sometimes called nonterminal bounded) if and only if there exists an integer k such that any sentential form α such that $S \stackrel{*}{\Rightarrow} \alpha$, contains at most k nonterminals (whether leftmost, rightmost or any derivation is considered). A language is ultralinear (nonterminal bounded) if and only if it is generated by an ultralinear grammar.

Theorem The family of ultralinear languages is the same as the family of languages accepted by finite turn PDA.

For example, consider the CFL

$$
L=\left\{w \mid w \in\{a, b\}^{+}, w \text { has equal number of } a^{\prime} s \text { and } b^{\prime} s\right\} .
$$

For accepting arbitrarily long strings, the number of turns of the PDA
cannot be bounded by some k.

contd.

Definition Let $G=(N, T, P, S)$ be a CFG. For a sentential form α, let $\#_{N}(\alpha)$ denote the number of nonterminals in α. Let D be a derivation of a word w in G.

$$
D: S=\alpha_{0} \Rightarrow \alpha_{1} \Rightarrow \alpha_{1} \cdots \Rightarrow \alpha_{r}=w
$$

The index of D is defined as

$$
\operatorname{ind}(D)=\max _{0 \leq j \leq r} \#_{N}\left(\alpha_{j}\right)
$$

For a word w in $L(G)$, there may be several derivations, leftmost, rightmost, etc. Also if G is ambiguous, w may have more than one leftmost derivation.

contd.

For a word $w \in L(G)$, we define

$$
\operatorname{ind}(w, G)=\min _{D} \operatorname{ind}(D)
$$

where D ranges over all derivations of w in G. The index of G, $\operatorname{ind}(G)$, is the smallest natural number u such that for all $w \in L(G), \operatorname{ind}(w, G) \leq u$. If no such u exists, G is said to be of infinite index. Finally, the index of a CFL L is defined as $\operatorname{ind}(L)=\min _{G} \operatorname{ind}(G)$ where G ranges over all the context-free grammars generating L.

We say that a CFL is of finite index then the index of L is finite.
The family of CFL with finite index is denoted as $\mathcal{F I}$. Sometimes, this family is also called the family

contd.

of derivation bounded languages.
Example Let $G=\left(\left\{X_{1}, X_{2}\right\},\{a, b\}, P, X_{1}\right)$ where
$P=\left\{X_{1} \rightarrow X_{2} X_{1}, X_{1} \rightarrow \epsilon, X_{2} \rightarrow a X_{2} b, X_{2} \rightarrow a b\right\}$
is of index 2. The language consists of strings of the form
$a^{n_{1}} b^{n_{1}} a^{n_{2}} b^{n_{2}} \ldots a^{n_{r}} b^{n_{r}}$. In a leftmost derivation, the maximum number of nonterminals that can occur is 2 whereas in a rightmost derivation it is r and keeps increasing with r. This grammar is not a nonterminal bounded grammar but it is of finite index.

Example $L=$ Dyck set $=$ well formed strings of parentheses is generated by $\{S \rightarrow S S, S \rightarrow a S b, S \rightarrow a b\}(a=(, b=))$. Here we find that as the length of the string increases, and the level of

contd.

nesting increases the number of nonterminals in a sentential form keeps increasing and cannot be bounded. This CFG is not of finite index. L is not of finite index.
Definition A context-free grammar $G=(N, T, P, S)$ is termed nonexpansive if there is no nonterminal
$A \in N$ such that $A \stackrel{*}{\Rightarrow} \alpha$ and α contains two occurrences of A. Otherwise G is expansive. The family of languages generated by nonexpansive grammars is denoted by $\mathcal{N E}$.
Theorem $\mathcal{N E}=\mathcal{F} \mathcal{I}$.

Self-embedding Property

In this section we consider the self-embedding property which makes CFL more powerful than regular sets. Pumping lemma for CFL makes use of this property. By this property it is possible to pump equally on both sides of a substring which is lacking in regular sets.
Definition Let $G=(N, T, P, S)$ be a CFG. A nonterminal $A \in N$ is said to be self-embedding if $A \stackrel{*}{\Rightarrow} x A y$ where $x, y \in(N \cup T)^{+}$. A grammar G is self-embedding if it has a self-embedding nonterminal.

A context-free grammar is nonself-embedding if none of its nonterminals are self-embedding.

contd.

Any right linear grammar is nonself-embedding as the nonterminal occurs as the rightmost symbol in any sentential form. Hence a regular set is generated by a nonself-embedding grammar. We have the following result.
Theorem If a CFG G is nonself-embedding, then $L(G)$ is regular.
Proof Let $G=(N, T, P, S)$ be a nonself-embedding CFG. Without loss of generality we can assume that $\epsilon \notin L(G)$ and G is in GNF. [While converting a CFG to

GNF, the self-embedding or nonself-embedding property does not get affected].

contd.

Let k be the number of nonterminals in G and l be the maximum length of the right-hand side of any production in G. Let $w \in L(G)$ and consider a leftmost derivation of w in G. Every sentential form is of the form $x \alpha$ where $x \in T^{*}$ and $\alpha \in N^{*}$. The length of α can be at most $k l$. This can be seen as follows. Suppose there is a sentential form $x \alpha$ where $|\alpha|>k l$. Consider the corresponding derivation tree which is of the form given in figure.

contd.

Consider the path from S to X, the leftmost nonterminal in α. Consider the nodes in this path where nonterminals are introduced to the right of the nodes. Since the maximum number of nodes introduced on the right

contd.

is $l-1$, there must be more than k such nodes as $|\alpha|>k l$. So two of such nodes will have the same label say A and we get $A \stackrel{*}{\Rightarrow} x^{\prime} A \beta, x^{\prime} \in T^{+}, \beta \in N^{+}$. Hence A is self-embedding and G is not nonself-embedding as supposed. Hence the maximum number of nonterminals which can occur in any sentential form in a leftmost derivation in G is $k l$. Construct a right linear grammar $G^{\prime}=\left(N^{\prime}, T, P^{\prime}, S^{\prime}\right)$ such that $L\left(G^{\prime}\right)=L(G)$.
$N^{\prime}=\left\{[\alpha]\left|\alpha \in N^{+},|\alpha| \leq k l\right\}\right.$.
$S^{\prime}=[S]$

contd.

P^{\prime} consists of rules of the following form.
If $A \rightarrow a B_{1} \ldots B_{m}$ is in P, then
$[A \beta] \rightarrow a\left[B_{1} \ldots B_{m} \beta\right]$ is in P^{\prime} for all possible $\beta \in N^{*}$ such that $|A \beta| \leq k l,\left|B_{1} \ldots B_{m} \beta\right| \leq k l$. So if there is a derivation in G.

$$
S \Rightarrow a_{1} \alpha_{1} \Rightarrow a_{1} a_{2} \alpha_{2} \Rightarrow \cdots \Rightarrow a_{1} \ldots a_{n-1} \alpha_{n-1} \Rightarrow a_{1} \ldots a_{n}
$$

there is a derivation in G^{\prime} of the form

$$
[S] \Rightarrow a\left[\alpha_{1}\right] \Rightarrow a_{1} a_{2}\left[\alpha_{2}\right] \Rightarrow \cdots \Rightarrow a_{1} \ldots a_{n-1}\left[\alpha_{n-1}\right] \Rightarrow a_{1} \ldots a_{n}
$$

and vice versa. Hence $L(G)=L\left(G^{\prime}\right)$ and $L(G)$ is regular.

contd.

Theorem Every context-free language over a one letter alphabet is regular. Thus a set $\left\{a^{i} \mid i \in A\right\}$ is a CFL if and only if A is ultimately periodic. Proof Let $L \subseteq a^{*}$ be a context-free language. By pumping lemma for CFL, there exists an integer k such that for each word w in L such that $|w|>p, w$ can be written as uvxyz such that $|v x y| \leq k,|v y|>0$ and $u v^{i} x y^{i} z \in L$ for all $i \geq 0, w$ is in a^{*}. Hence u, v, x, y, z all are in a^{*}. So $u x z(v y)^{i}$ is in L for all $i \geq 0$. Let $v y=a^{j}$. So $u x z\left(a^{j}\right)^{i}$ is in L for all $i \geq 0$. Let $n=k(k-1) \ldots 1=k$!. Then $w\left(a^{n}\right)^{m}$ is in L, because $w\left(a^{n}\right)^{m}$ can be written as $w\left(a^{j}\right)^{i}$

contd.

for $i=m \times \frac{k!}{j}, 1 \leq j \leq k . w\left(a^{n}\right)^{*} \subseteq L \subseteq a^{*}$ for each word w in L such that $|w|>k$.

For each $i, 1 \leq i \leq n$, let $A_{i}=a^{k+i}\left(a^{n}\right)^{*} \cap L$. If $A_{i} \neq \phi$, let w_{i} be the word in A_{i} of minimum length. If $A_{i}=\phi$, let w_{i} be undefined. Then w is in $\bigcup_{i} w_{i}\left(a^{n}\right)^{*}$ for each w in L with $|w|>k$. Let B be the set of strings in L of length $\leq k$. Then $L=B \cup \bigcup_{i=1}^{n} w_{i}\left(a^{n}\right)^{*}$. B is a finite set represented by $u_{1}+\cdots+u_{r}$ (say). Then L is represented by $\left(u_{1}+\cdots+u_{r}\right)+\left(w_{1}+\cdots+w_{n}\right)\left(a^{n}\right)^{*}$. Therefore L is regular.

contd.

Example As seen earlier, it immediately follows that $\left\{a^{n^{2}} \mid n \geq 1\right\},\left\{a^{2^{n}} \mid n \geq 0\right\},\left\{a^{p} \mid p\right.$ is a prime $\}$ are not regular and hence they are not context-free.

